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1 Problem 5.4

(a) If ψa and ψb are orthogonal, and both normalized, what is the constant A in Equation 5.10?

(b) If ψa = ψb, what is A?

1.1 Solution to Problem 5.4 Part A
Equation 5.10 is

ψ±(~x) = A[ψa(x1)ψb(x2)± ψb(x1)ψa(x2)]

To determine A we normalize the wavefunction.

(1)

1 =

∫
|ψ±(~x)|2dx1dx2

=

∫
A2[ψa(x1)ψb(x2)± ψb(x1)ψa(x2)]2dx1dx2

= A2

∫ (
[ψa(x1)ψb(x2)]2 + [ψb(x1)ψa(x2)]2 ± 2ψb(x1)ψa(x2)ψa(x1)ψb(x2)

)
dx1dx2

= A2

∫
ψ2
a(x1)ψ2

b (x2)dx1dx2 +

∫
ψ2
b (x1)ψ2

a(x2)dx1dx2 ±
∫

2ψb(x1)ψa(x2)ψa(x1)ψb(x2)dx1dx2

= A2

∫
ψ2
a(x1)dx1

∫
ψ2
b (x2)dx2 +

∫
ψ2
b (x1)dx1

∫
ψ2
a(x2)dx2 ±

∫
2ψb(x1)ψa(x1)dx1

∫
ψa(x2)ψb(x2)dx2

= A2[1 + 1± 0]

= 2A2

Where we have used the orthonormality of the wavefunctions (
∫
ψiψjdx = δij) to determine the values of the integrals.

The constant is then just

A =
1√
2

1.2 Solution to Problem 5.4 Part B
If ψa = ψb = ψ then the only that changes from Part A is the last term is not zero.

(2)

1 =

∫
|ψ±(~x)|2dx1dx2

=

∫
A2[ψ(x1)ψ(x2)± ψ(x1)ψ(x2)]2dx1dx2

= A2

∫ (
[ψ(x1)ψ(x2)]2 + [ψ(x1)ψ(x2)]2 ± 2ψ(x1)ψ(x2)ψ(x1)ψ(x2)

)
dx1dx2

= A2

∫
ψ2(x1)ψ2(x2)dx1dx2 +

∫
ψ2(x1)ψ2(x2)dx1dx2 ±

∫
2ψ(x1)ψ(x2)ψ(x1)ψ(x2)dx1dx2

= A2

∫
ψ2(x1)dx1

∫
ψ2(x2)dx2 +

∫
ψ2(x1)dx1

∫
ψ2(x2)dx2 ±

∫
2ψ2(x1)dx1

∫
ψ2(x2)dx2

= A2[1 + 1± 2]

= 4A2
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Where we have used the orthonormality of the wavefunctions (
∫
ψiψjdx = δij) to determine the values of the integrals.

We note that the bracketed term is either 4 or 0, but we re disregard the zero because that is the trivial case of no particles at
all. This is due to the Pauli exclusion principle and the anti-symmetry of the spatial wavefunctions of two identical fermions.
That being said the constant is

A =
1

2

2 Problem 5.6
Imagine two noninteracting particles, each of mass m, in the infinite square well. If one is in the ψn state, and the other

in state ψ`, evaluate 〈(x1 − x2)2〉, assuming

1. They are distinguishable particles

2. They are identical bosons

3. They are identical fermions

2.1 Solution to Problem 5.6 Part A
First we note that from Equation 5.18:

〈(x1 − x2)2〉 = 〈x2
1〉+ 〈x2

2〉 − 2〈x1x2〉

Now, using this definition and the properties of the infinite well wavefunctions (mainly orthogonality), we can readily
calculate expectation values. If they are distinguishable then there wavefunction is

ψ(x1, x2) = ψn(x1)ψ`(x2)

We will also need to know an integral which I have evaluated using Wolfram

Let us break this problem up into the two parts. First calculate 〈x2
n〉 (without loss of gernerality)
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〈x2
1〉 =

∫
ψn(x1)ψ`(x2)x2

1ψn(x1)ψ`(x2)dx1dx2

〈x2
1〉 =

∫
x2

1ψ
2
n(x1)dx1

∫
ψ2
` (x2)dx2

〈x2
1〉 =

∫
x2

1ψ
2
n(x1)dx1

〈x2
1〉 =

2

L

∫ L

0

x2
1 sin2(nπx1/L)dx1

〈x2
1〉 =

2

L

(
L

nπ

)3 ∫ nπ

0

z2 sin2(z)dz

〈x2
1〉 =

2

L

(
L

nπ

)3 [
4z3 + (3− 6z2) sin(2x)− 6x cos(2x)

]nπ
0

〈x2
1〉 =

2

L

(
L

nπ

)3
1

24

[(
4(nπ)3 + (3− 6(nπ)2) sin(2nπ)− 6nπ cos(2nπ)

)
− (0 + (3− 0)0− 0 cos(0))

]
〈x2

1〉 =
1

12L

(
L

nπ

)3 [
4(nπ)3 − 6nπ

]
〈x2

1〉 = L2

[
1

3
− 1

2n2π2

]
Now we can do the same thing to find the expectation value of x2 except the answer is dependent on ` instead of n.

〈x2
2〉 = L2

[
1

3
− 1

2`2π2

]
The last step is to determine the value of 〈x1x2〉. We will do that explicitly

(3)

2〈x1x2〉 = 2

∫
ψn(x1)ψ`(x2)x1x2ψn(x1)ψ`(x2)dx1dx2

= 2

∫
x1ψ

2
n(x1)dx1

∫
x2ψ

2
` (x2)dx2

=
4

L

∫ L

0

x1 sin2(nπx1/L)dx1

∫ L

0

x2 sin2(`πx2/L)dx2

= 2
L

2

L

2

=
L2

2

Where every term in the integral (as seen in Figure 2) cancel except the first term. This is also what we expect to obtain
because the particles average position should be in the center of the well.

Putting all of these together we get

〈(x1 − x2)2〉 = L2

[
1

6
− 1

2n2π2
− 1

2`2π2

]
2.2 Solution to Problem 5.6 Part B

Now for identical bosons we will use Equation 5.21 with upper sign. Equation 5.21 is

〈(x1 − x2)2〉± = 〈x2
1〉a + 〈x2

2〉b − 2〈x1〉a〈x2〉b ± |〈x〉ab|2

However, we see the only difference between Part A and Part B (and Part C!) is the last term so all we have to do is calculate
the last term and tack it onto the answer in Part A. We will need the following integral to help us calculate the last term of
Equation 5.21. I evaluated it using Wolfram Alpha.
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(4)

〈x〉n` =

∫
ψn(x)ψ`(x)xdx

=
2

a

∫ L

0

x sin(nπx/L) sin(`πx/L)dx

=
1

L

([
1

(n− `)π

]2

(cos((n− `)π)− 1)−
[

1

(n+ `)π

]2

(cos((n+ `)π)− 1)

)

=
L

π2

(
(−1)n+` − 1

) [ 1

(n− `)2
− 1

(n+ `)2

]
We can compactly write this as

L

π2

(
(−1)n+` − 1

) [ 1

(n− `)2
− 1

(n+ `)2

]
=

{
0, n+ ` = even

− 8Ln`
π2(n2−`2)2 , n+ ` = odd

Hence, the final answer is

〈(x1 − x2)2〉 = L2

[
1

6
− 1

2n2π2
− 1

2`2π2
− 128(n`)2

π4(n2 − `2)4

]
Where the last term only survives if the particles are in states with opposite parity, otherwise the they have same expected

separation as distinguishable particles.

2.3 Solution to Problem 5.6 Part C
From symmetry we can see immediately without going through any of the tedious calculations that for identical fermions

we can just say that expected separation is

〈(x1 − x2)2〉 = L2

[
1

6
− 1

2n2π2
− 1

2`2π2
+

128(n`)2

π4(n2 − `2)4

]
Where the last term only survives if the particles are in states with opposite parity, otherwise the they have same expected

separation as distinguishable particles.

3 Problem 5.12

(a) Figure out the electron configurations for the first two rows of the Periodic Table, and check your results against Table 5.1.

(b) Figure out the corresponding total angular momenta, in the notation of Equation 5.34, for the first four elements. List
all the possibilities for boron, carbon, and nitrogen.
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3.1 Solution to Problem 5.12 Part A and B
The first two rows just fill the electron configuration up to the p orbital. Hence, we just fill the electrons in the orbitals

sequentially. The superscript is 2S + 1 where S is the total spin, the letter tells you the total angular momentum and the
subscript tells you the total angular momentum and spin, J = |L ± S|. For each value of 2S + 1 we have to use each value
of total angular momentum L to get all spectroscopic terms. Note that we can ignore the inner electrons because they are
locked into singlet states of total angular momentum of zero and total spin of zero. The p-orbital electrons can be in either
singlet or triplet configurations. The explanations for multiple spectroscopic states are laid out below along with a nice
graphical representation of the orbitals.

Figure 1: This is a graphical representation of the spdf single electron orbitals. Not of importance here, but very nice to
visual what these orbitals correspond to.

Boron: Boron has one electron in its p-orbital. This means that each electron can have either ` = 0 or ` = 1 (corre-
sponding to orbital angular or 0 or

√
2h̄, respectively) and total spin of S = 1/2 =↑ or ↓. For the spectroscopic term it can

have two forms, one with total angular momentum of one or zero. This gives us 2S1/2 or 2P3/2.
Carbon: Carbon has two electrons in its p-orbital. This means that each electron can have either ` = 0 or ` = 1

(corresponding to orbital angular or 0 or
√

2h̄, respectively). Since there is two electrons the total angular momentum L can
take on the values L = 0, 1, 2 (because there is two electrons and each could have ` = 0, 1). The total spin can take on values
of S = 0, 1 corresponding to electrons that align like 1 = (↑↑, ↓↓) or 0 = (↑↓). The total angular momentum J can be 0, 1, 2,
or 3. This means there should be 10 total states that these atoms could have, and 10 different spectroscopic terms we need
to determine. These states are: 1S0,

3 S1,
1 P1,

3 P0,
3 P1,

3 P 1
2D2,

3D1,
3D2,

3D3

Nitrogen: Nitrogen has three electrons in its p-orbital. This means that each electron can have either ` = 0 or ` = 1
(corresponding to orbital angular or 0 or

√
2h̄, respectively). Since there is three electrons the total angular momentum L can

take on the values L = 0, 1, 2, 3. The total spin can take on values of S = 1/2, 3/2 corresponding to electrons that align like1

1/2 = (↑↑↓, ↓↓↑) or 3/2 = (↑↑↑, ↓↓↓). The total angular momentum will be all possible combinations of J = |L±S|. This would
produce a combination of 14 These states are: 2S1/2,

4 S3/2,
2 P1/2,

2 P3/2,
4 P5/2,

4 P3/2,
4 P1/2,

2D3/2,
2D5/2,

4D1/2,
4D7/2,

4D1/2,
4D5/2,

2 F5/2,
2 F 4

7/2F3/2,
4 F5/2,

4 F7/2,
4 F9/2.

I have summarized these results, along with the spectroscopic notations in the list seen below. Our results here are in
accordance with the results in Table 5.1.

Figure 2: Here are the orbitals with electrons (including spin) for the nitrogen atom. Courtesy of chemtube3d.com.

1The electrons could align in any permutation of these. As long the net spin is ±1/2 or ±3/2.
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1. Hydrogen: 1s =======⇒2(1/2)+1 S1/2 =2 S1/2

2. Helium: 1s2 =======⇒2(0)+1 S0 =1 S0

3. Lithium: 1s22s =======⇒2(1/2)+1 S1/2 =2 S1/2

4. Beryllium: 1s22s2 =======⇒2(0)+1 S1/2 =1 S1/2

5. Boron: 1s22s22p =======⇒2 P1/2,
2 P3/2

6. Carbon: 1s22s22p2 =======⇒1 S0,
3 S1,

1 P1,
3 P0,

3 P1,
3 P 1

2D2,
3D1,

3D2,
3D3

7. Nitrogen: 1s22s22p3 =======⇒2 S1/2,
4 S3/2,

2 P1/2,
2 P3/2,

4 P5/2,
4 P3/2,

4 P1/2,
2D3/2,

2D5/2,
4D1/2,

4D7/2,
4D1/2,

4D5/2,
2 F5/2,

2 F 4
7/2F3/2,

4 F5/2,
4 F7/2,

4 F9/2

8. Oxygen: 1s22s22p4

9. Fluorine: 1s22s22p5

10. Neon: 1s22s22p6

4 Problem 5.16

The density of copper is 8.96g/cm3, and its atomic weight is 63.5g/mole.

(a) Calculate the Fermi energy for copper. Give answer in electron volts.

(b) What is the corresponding electron velocity?

(c) At what temperature would the characteristic thermal energy equal the Fermi, for copper?

(d) Calculate the degeneracy pressure.

4.1 Solution to Problem 5.16 Part A
First we need to know how many free electrons copper has. For this we consult Table 5.1 in Griffiths where we see that

copper is (Ar)4s3d10 which means there is one extra electron in the 4s orbital and a completely filled 5d orbital2. This means
there is one extra electron able to conduct, or q = 1.

We also need the number or atoms per volume, N/V , to obtain the Fermi energy. To get this we just to divide the density
of copper by the atomic weight, then multiple by Avogadro’s number.

N/V =
8.96g/cm3

63.5g/mole
· 6.02× 1023molecules/mole = 8.5× 1022e−/cm3 = 8.5× 1028e−/m3

Now we have everything needed to calculate the Fermi energy. We will skip the derivation as it is very straightforward
and is easily found in any quantum mechanics or solid state textbook. We just make use of Equation 5.43

EF =
h̄2

2m

(
3
N

V
qπ2

)2/3

= 1.128× 10−18J = 7.04eV

where we have substituted the value of ρ of Equation 5.43 with its equivalent Nq/V .

2Remember that the screening due to inner electrons produces non-sequential filling of orbitals; since lower angular momentum states of higher
energy orbitals can produce lower energy states!
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4.2 Solution to Problem 5.16 Part B
To find the Fermi velocity we will just set the Fermi energy equal to the classical kinetic energy.

EF =
1

2
mv2 −→ v =

√
2Ef
m

=

√
2(7.04eV )

0.511× 106eV/c2
= 0.005c ≈ 1.6× 106m/s

We see that the velocity is much less than the speed of light, approximately half a percent of the speed of light, hence we
can use the classical kinetic energy without having significant error in our results. We used the known value of the mass of
an electron in terms of electron-volts (eV).

4.3 Solution to Problem 5.16 Part C
To determine the ”temperature” of the copper material we will just set the Fermi energy equal to the thermal energy by

making use of E = kbT where kb = 1.38× 10−23J ·K = 8.62× 10−5eV ·K is the Boltzmann constant.

EF = kbT −→ TF =
EF
kb

=
7.04eV

8.62× 10−5eV ·K
= 8.2× 105K

4.4 Solution to Problem 5.16 Part D
The degeneracy pressure is easily calculated using Equation 5.46 in Griffiths

P =
(3π2)2/3h̄2

2m
(N/V )5/3 = 6.4× 1010N/m2

5 Problem 5.29

(a) Show that for bosons the chemical potential must always be less than the minimum allowed energy.

(b) In particular, for the ideal bose gas, µ(T ) < 0 for all T . Show that in this state µ(T ) monotonically increases as T
decreases, assuming N and V are held constant.

(c) Bose condensation crisis. Evaluate the integra, for µ = 0, and obtain the formula for the critical temperature Tc at which
this happens.

(d) Find the critical temperature for 4He. Its density at this temperature is 0.15g/cm3.

5.1 Solution to Problem 5.29 Part A
The chemical potential must have a minimum value if n(ε) is to remain positive (it has to remain positive because a

negative value would be nonsense). This value is always positive as long as e(ε−µ)/kbT > 1, hence

e(ε−µ)/kbT >1

ln(e(ε−µ)/kbT ) > ln(1)

(ε− µ)/kbT >0

ε > µ

This means that the chemical potential must always be less than the energy of the state in question.

5.2 Solution to Problem 5.29 Part B
Looking at equation 5.108

N =
V

2π2

∫ ∞
0

k2

e[(h̄2k2/2m)−µ]/kbT − 1
dk

We see that the exponential should stay constant for N and V to stay constant. If T starts decreasing the denominator of
the exponential will be getting smaller. This means the numerator should get smaller too, but the first term (energy term is
relatively constant) hence µ should increase monotonically to decrease the entire numerator just as much as the denominator

decreases. But not that since µ is always less than the energy ε = h̄2k2

2m and µ is less than zero it will be increasing but always
negative. QED.
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5.3 Solution to Problem 5.29 Part C
If we let µ = 0, then Equation 5.108 becomes

N/V =
1

2π2

∫ ∞
0

k2

eh̄
2/(2mkbT )k2 − 1

dk

Now if we use the substitution x = h̄2

(2mkbT )k
2 with dx = h̄2

(2mkbT )2kdk and k =
√

2mkbT
h̄2

√
x then our integral becomes

N/V =
1

2π2

∫ ∞
0

√
2mkbT
h̄2

√
x

ex − 1

dx
h̄2

(4mkbT )

=
1

4π2

(
2mkbT

h̄2

)3/2 ∫ √
x

ex − 1
dx

Where we know this integral as ∫
xs−1

ex − 1
dx = Γ(s)ζs

For our integral s = 3/2 hence our integral becomes

N/V =
1

4π2

(
2mkbT

h̄2

)3/2

Γ(3/2)ζ(3/2) =
1

4π2

(
2mkbT

h̄2

)3/2 √
π

2
2.61

Now we know that N and V are constant and that this is a critical value when Bose condensation occurs. Hence we can
find the critical temperature

N/V =
1

4π2

(
2mkbT

h̄2

)3/2 √
π

2
2.61 −→ Tc =

2πh̄2

mkb

(
N

2.61V

)2/3

5.4 Solution to Problem 5.29 Part D
For 4He we use the given density and the same technique in problem 5.16 Part A to find the number electrons per unit

volume. We get

N/V =
0.15g/cm3

4g/mole
6.02× 1023molecules/mole = 2.26× 1028e−/m3

Now plugging this value into the result of Part C we get

Tc =
2πh̄2

mkb

(
N

2.61V

)2/3

=
2πh̄2

mkb

(
1

2.61
(2.26× 1028e−/m3)

)2/3

≈ 3.1K

6 Problem 5.35

Certain cold stars (called white dwarfs) are stabilized against gravitational collapse by the degeneracy pressure of their
electrons (Equation 5.46). Assuming constant density, the radius R of such an object can be calculated as follows:

(a) Write the total electron energy (Equation 5.45) in terms of the radius, the number of nucleons N, the number of electrons
per nucleon q, and the mass m.

(b) Look up, or calculate, the gravitational energy of a uniformly dense sphere.

(c) Find the radius which total energy is minimum.

(d) Determine the radius of a white dwarf with mass of the sun.

(e) Determine the Fermi energy for the white dwarf and compare it with rest energy of an electron.
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6.1 Solution to Problem 5.35 Part A
Starting with the degeneracy pressure, Equation 5.46, we can solve for Etot easily.

P =
2Etot
3V

=
(3π2)2/3h̄2

2m
(Nq/V )5/3

Rearranging this equation we get

Etot =
3V

2

(3π2)2/3h̄2

2m
(Nq/V )5/3 =

3

2V 2/3

(3π2)2/3h̄2

2m
(Nq)5/3

We know everything except for V , the volume, but we know that the white dwarf is a sphere hence the volume is
V = (4/3)πR3. Our expression for Etot becomes

Etot =
3

2V 2/3

(3π2)2/3h̄2

2m
(Nq)5/3 =

3

2(4π/3)2/3R2

(3π2)2/3h̄2

2m
(Nq)5/3 =

3(9π)2/3h̄2

mR2

(
Nq

4

)5/3

6.2 Solution to Problem 5.35 Part B
As the problem asks we shall look up or calculate the energy of a uniform dense sphere. I chose the lazy route and looked

it up on Wikipedia. The derivation is shown below

Figure 3: This is the derivation given on the Wikipedia page for Gravitational Binding Energy. The link is
http://en.wikipedia.org/wiki/Gravitational-binding-energy.

Hence, after one Google search we have come to the conclusion that the gravitational binding energy is just

Ebind = −3GM2
total

5R
= −3GN2M2

5R

Where the total mass Mtotal is just the mass of a nucleon times the number of nucleons, Mtotal = NM .

6.3 Solution to Problem 5.35 Part C
The total energy ET of the white dwarf will be the total electron energy plus the total gravitational binding energy

ET = Etot + Ebind =
α

R2
− β

R

Where
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α =
3(9π)2/3h̄2

m

(
Nq

4

)5/3

and β =
3GN2M2

5

To find the radius that minimizes the total energy we must find the radius that makes the derivative of the total energy
function equal to zero. I have graphed the total energy function below.

Taking the derivative of the total energy and setting it equal to zero we find that

dET
dR

= −2
α

R3
−
(
− β

R2

)
= 0 −→ βR3 = 2αR2 −→ R =

2α

β

Plugging in the values for the constants α and β we get

R =
2α

β
=

2 3(9π)2/3h̄2

m

(
Nq
4

)5/3

3GN2M2

5

=
7.6× 1025m

N1/3

6.4 Solution to Problem 5.35 Part D
To find the radius of a white dwarf with the mass of the sun all we need to do is calculate the total number of nucleons

in the sun. We know the total mass of the sun and the mass of one nucleon hence the total number of nucleons is just

N =
Msun

Mnucleon
=

1.99× 1030kg

1.67× 10−27kg/nucleon
= 1.2× 1057nucleon −→ 1

N1/3
= 9.45× 10−20

Plugging this value into our result of Part C we get

R = (7.6× 1025m)(9.45× 10−20) = 7.2× 105m

6.5 Solution to Problem 5.35 Part E
To find the Fermi energy we just use Equation 5.43 with our known values.

EF =
h̄2

2m

(
3
N

V
π2q

)2/3

=
h̄2

2mR2

(
9Nπ

4
q

)2/3

= 3× 10−14J = 1.9MeV

Comparing this value to the rest mass energy of the electron (0.511MeV/c2) we see that the electrons have nearly four
times the rest mass energy hence would have a gamma factor of four. A gamma factor of four corresponds to a velocity of

vf ≈
√

15
4 c which is definitely relativistic.
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