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1 Homework 2 Problems

1.1 Problem 2.13
A particle falling under gravity is subject to a retarding force proportional to its velocity. Find its position as a function

of time, if it starts from rest, and show that it will eventually reach a terminal velocity.

+

λv

mg v

1.1.1 Part A
We first setup a differential equation using Newton’s second and our free body diagram. We can see that if we write it in

terms of velocity we have a first order separable differential equation.
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γż + g =ge−γt
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Now we have another first order separable differential equation that we can integrate to get position as a function of time.
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1.1.2 Part B
We can see that the particle has a limiting speed which is found by taking time to infinity for the velocity function

lim
t→∞

v(t) = lim
t→∞

g
e−γt − 1

γ
=
e−γ∞ − 1

γ
=
g

γ
(2)

1.2 Problem 2.14
The terminal speed of the particle in Problem 13 is 50ms . Find the time it takes to reach a speed of 40ms , and the distance

it has fallen in that time.

1.2.1 Part A
Since the terminal velocity of an object is 50ms we can determine the coefficient of the retarding force, γ, because

vterminal = g
γ −→ γ = 1

5 . Now we just use our velocity equation found in the previous problem to obtain t.

−40ms =
ge−γt − g

γ

−
40ms γ

g
+ 1 =e−γt

ln

[
−

40ms γ

g
+ 1

]
=− γt

t =−
ln
[
−40ms γ + 1

]
γ

t =− 5ln

[
−40ms

1

10 · 5
+ 1

]
t =− 5ln [0.2]

t =8.05s (3)

1.2.2 Part B
To determine how far the object fell we just plug out time into position function

z =
g

γ2
(
1− e−γt

)
− gt

γ

z =
10
1
5

2

(
1− e− 8.05

5

)
− 10 · 8.05 · 5

z =250 (1− 0.2)− 402.5

z =200− 402.5

z =− 202.5m (4)
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1.3 Problem 2.20

A particle of mass m moves in the region x > 0 under the force F = −mω2(x− a4

x3 ), where ω and a are constants. Sketch
the potential energy function. Find the position of equilibrium, and the period of small oscillations about it. The particle
starts from this point with velocity v. Find the limiting values of x in the subsequent motion. Show that the period of
oscillation is independent of v.

1.3.1 Part A

Figure 1: The force function F (x) = −mω2
(

1− a4

x3

)
Figure 2: The potential function V (x) = −mω2

(
x2

2 + a4

2x2

)
1.3.2 Part B

To find the equilibrium position we must set the force equal to zero

F = 0 =−mω2

(
x− a4

x3

)
x =

a4

x3

x4 =a4

x =± a (5)

To find the period of oscillation we first need to compute V ′′ = F ′ = mω2
(

1 + 3a4

x4

)
. The equation for period is

T = 2π
√

m
V ′′(x) . Also, V ′′ evaluated at x = ±a, is V ′′(x = ±a) = 4mω2. Hence, the period of oscillation is

T = 2π

√
m

4mω2
=

2π

2ω
=
π

ω
(6)

1.3.3 Part C
If a particle starts at this point and is given a velocity v the limiting x positions will be found by setting its kinetic energy

to the potential energy.

Ti + Vi =Vf
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+
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Now we make the subsitution y = x2. I solved the resulting bi-quadratic equation on MatLab but the steps to solving are as
follows

y2 +

(
v2

ω2
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)
y + a4 =0

y =
−
(
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)
±
√(
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−
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√(
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2
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2
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√

v4
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2
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−
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√
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√
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Now we will just take the square root of this equation to obtain the roots of x of the bi-quadratic equation.

y = x2 =− v2

2ω2
± v

ω

√
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4ω2
− a2 + a2
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√
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± v

ω

√
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(7)

Where the last step was computed using Wolfram Alpha.

1.3.4 Part D
Proof. To see that the period is independent of velocity we can just use the equation of period

τ = 2π

√
m

k
= 2π

√
m

V ′′(x)
= 2π

√
m

F ′(t)
= 2π

√
m

ma′(t)
= 2π

√
1

a′(t)

Hence the period is dependent on the rate of change of the acceleration not on velocity.

1.4 Problem 2.27
Three perfectly elastic bodies of masses 5 kg, 1kg, 5kg are arranged in that order on a straight line, and are free to move

along it. Initially, the middle one is moving with velocity 27ms , and the others are at rest. Find how many collisions take
place in the subsequent motion, and verify that the final value of the kinetic energy is equal to the initial value.

v21

v22 v32

v32

v13 v23 v33 = v32

v13

v15 = v13 v25 v35 = v34

4



1.4.1 Initial energy
There is only kinetic energy in the initial situation given by

E = Ti =
m2v

2
21

2
= 364.5J

1.4.2 First Collision
To determine the resulting velocities v22 and v32. Since it is an elastic collision we can say energy is also conserved. We

first write down the equations for conservation of momentum and conservation of energy.

P1i = P1f

m2v21 = −m2v22 +m3v32

m2v21 +m2v22 = m3v32

m2 (v21 + v22) = m3v32 (8)

E1i = E1f

1

2
m2v

2
21 =

1

2
m2v

2
22 +

1

2
m3v

2
32

1

2
m2v

2
21 −

1

2
m2v

2
22 =

1

2
m3v

2
32

m2

(
v221 − v222

)
=

1

2
m3v

2
32

m2 (v21 − v22) (v21 + v22) = m3v
2
32 (9)

1.4.3 Second Collision
Now we divide the energy equation by the momentum equation to obtain v21 − v22 = v32. Plugging this back into the

momentum equation we get

m2 (v21 + v22) = m3v32

m2v21 +m2v22 = m3v21 −m3v22

−m3v22 −m2v22 = m2v21 −m3v21

v22 =
(m3 −m2) v21

(m3 +m2)

v22 = −2

3
v21 = −2

3
27ms = −18ms

We can then find v32 by v32 = v21 − v22 = 9ms . The second ball then begins traveling towards the first ball. We have
the same situation with a ball traveling with initial velocity then striking a stationary ball. We can use the same equations
as derived previously to find the resulting velocities. The equation for velocities of this new situation is v13 = v22 + v23.
Plugging back into the momentum equation we obtain

v23 =
(m1 −m2) v22

(m1 +m2)
=

2

3
v22 = 12ms

After the collision ball 1 will have velocity v13 = v22 + v23 = 12ms − 18ms = −6ms . Ball 2 will hit ball 3 again because ball
2 has a larger velocity than ball 3 (v23 > v32).

1.4.4 Third Collision
Since now we have a collision between two moving particles we must derive an equation for the resulting velocities using

the same technique.

P2i = P2f

m2v23 +m3v33 = m2v24 +m3v34

m2v23 −m2v24 = −m3v33 +m3v34

m2 (v23 − v24) = m3 (v34 − v33) (10)

E2i = E2f

1

2
m2v

2
23 +

1

2
m3v

2
33 =

1

2
m2v

2
24 +

1

2
m3v

2
34

1

2
m2v

2
23 −

1

2
m2v

2
24 =

1

2
m3v

2
34 −

1

2
m3v

2
33

m2

(
v223 − v224

)
= m3

(
v234 − v233

)
m2 (v23 − v24) (v23 + v24) = m3 (v34 − v33) (v34 + v33) (11)

Dividing these equations and then plugging back into momentum equation we obtain
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m2 (v23 − v24) (v23 + v24)

m2 (v23 − v24)
=
m3 (v34 − v33) (v34 + v33)

m3 (v34 − v33)

v23 + v24 =v34 + v33

v34 =v23 + v24 − v33

m2v23 +m2v24 = m3v33 −m3v34

m2v23 +m2v24 = m3v33 −m3 (v23 + v24 − v33)

m2v23 +m2v24 = m3v33 −m3v23 −m3v24 +m3v33

m3v24 +m2v24 = m3v33 −m2v23 −m3v24 +m3v33

(m2 +m3) v24 = m3v33 −m2v23 −m3v23 +m3v33

v24 =
m3v33 −m2v23 −m3v23 +m3v33

(m3 +m2)

v24 =
2m3v33 − (m3 +m2) v23

(m3 +m2)

Plugging the numbers in we obtain v24 = 7ms and v34 = v23 + v24 − v33 = 9ms + 7ms − 6ms = 10ms
1.4.5 Final Energy and Number of Collisions

The final energy is given by the sum of the individual kinetic energies.

Tf =
m1v

2
14

2
+
m2v

2
24

2
+
m3v

2
34

2
=

5kg · 6ms
2

2
+

1kg · 7ms
2

2
+

5kg · 10ms
2

2
= 364.5J

We also note there was only 3 collisions.

1.5 Problem 2.28
A ball is dropped from height h and bounces. The coefficient of restitution at each bounce is e. Find the velocity

immediately after the first bounce, and immediately after the nth bounce. Show that the ball finally comes to rest after a
time

1 + e

1− e

√
2h

g

t

x

h0

h1

h2h2

h3

h4
h5

1.5.1 Part A
The ball is dropped from height h. To find the velocity immediately after the first bounce we must first calculate the the

velocity of the ball just before it hits the ground. Then we use the definition of the coefficient of restitution, e = −v1v2 . We
use energy conservation since energy is conserved until the ball hits the ground, where the collision is inelastic.

Ei =Ef

mgh1 +
1

2
mv21 =mgh+

1

2
mv22

mgh =
1

2
mv22

v22 =gh

v2 =
√

2gh

This is the velocity of the ball just before it has the inelastic collision with the ground, now to find the velocity just after
it hits the ground we just multiply it by the coefficient of restitution

v2 = −ev1 = −e
√

2gh (12)
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1.5.2 Part B
To find the velocity after the n− th bounce we need to find a relation between each bounce. The velocity after the first

bounce is v2 = −e
√

2gh. The ball then loses no energy until the second bounce where its velocity just before it hits the
ground is v2 (since no energy is lost until it hits the ground). We then know that the velocity after the third bounce is
v3 = ev2 = e2

√
2gh. We see that this continues for each bounce hence

vn = −en
√

2gh (13)

Where I have defined downward as positive.

1.5.3 Part C
To find the time it takes the ball to come to a stop we first need to compute how much distance it traveled. It traveled a

distance h then bounces and travels h1 = e2h to the apex of its trajectory. The height of the second bounce is h2 = e2h1 = e4h.
The ball travels both upward a distance hn then also travels back down a distance hn. We see this continues forever. This
means we have a infinite series. The total distance traveled is given by

ht = −h+2h+2e2h+2e4h+· · ·+2e2nh = −h+h

∞∑
n=1

2ne2n = −h+ lim
n→∞

2h
1− e2n

1− e2
=

2h

1− e2
−h1− e2

1− e2
=

2h− h
(
1− e2

)
1− e2

=
h(1 + e2)

1− e2

Now using the position function x(t) = x0 + v0t+ 1
2at

2, with x0 = 0, x(t) = hn and v0 = 0. we will obtain

hn =0 + 0 · t+
1

2
gt2

t2 =2
hn
g

t2 =2

h(1+e2)
1−e2

g

t =

√
2

h(1+e2)
1−e2

g

t =
1 + e

1− e

√
2h

g
(14)

1.6 Problem 2.32
Find the Greens function of an oscillator in the case γ > ω0. Use it to solve the problem of an oscillator that is initially

in equilibrium, and is subjected from t = 0 to a force increasing linearly with time, F = ct.

1.6.1 Part A
The solution to the over damped oscillator is

x(t) = Ae−γ+t +Be−γ−t

Where γ+ = γ +
√
γ2 − ω2

0 and γ− = γ −
√
γ2 − ω2

0 . To find the constants A and B we use the fact that t ≤ 0 the
oscillator is in equilibrium, and γ+ is the positive root and γ− is the negative root. When plugging back into the equation
we find that

A(γ2+ + γγ+ + ω2
0)−B(γ2− + γγ− + ω2

0) =0

A−B =0

A = B

To find the value of A or B we plug initial values in to the velocity function, which is obtained by differentiating the
position function to obtain that

A =
Ir

m(γ+ − γ−)
= B

Hence, the solution to the homogeneous equation is given by

x(t) =


0 t < 0

I

m

e−γ+t + e−γ−t

γ+ − γ−
t ≥ 0

Now consider an impulse Ir at t = t′ we can then define Greens function as

G(t− t′) =


0 t < t′

Ir
m

e−γ+(t−t′) + e−γ−(t−t
′)

γ+ − γ−
t ≥ t′
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1.6.2 Part B
Now by using Greens theorem we can find the response to the force.

x(t) =

∫ t

0

G(t− t′)F (t)dt′

=c

∫ t

0

1

m

e−γ+(t−t′) + e−γ−(t−t
′)

γ+ − γ−
tdt′

=
c

m(γ+ − γ−)

∫ t

0

[
e−γ+(t−t′) + e−γ−(t−t

′)
]
t′dt′

=
I

m(γ+ − γ−)

[∫ t

0

te−γ+(t−t′)dt′ +

∫ t

0

te−γ−(t−t
′)dt′

]
x(t) =

c

m(γ+ − γ−)

[
1− e−γ+(t) (γ+t+ 1)

γ2+
+

1− e−γ−(t) (γ−t+ 1)

γ2−

]
When algebraically manipulated further we obtain the result

x(t) =
c

m

[
1

(γ+ − γ−)

(
e−γ+(t)

γ2+
+
e−γ+(t)

γ2+

)
− 2γ

ω4
+

t

ω2

]
(15)

Where we have previously defined ω2
0 = k

m and γ = 2λ
m . I used the integral formula∫

te−btdt =
e−bt(bt+ 1)

b2

which I found in a integral table from a introductory calculus textbook.

1.7 Problem 3.1
Find which of the following forces are conservative, and for those that are find the corresponding potential energy function

(a and b are constants, and a is a constant vector): (a) Fx = ax+ by2, Fy = az+ 2bxy, Fz = ay+ bz2; (b) Fx = ay, Fy = az,
Fz = ax; (c) Fr = 2arsinθsinφ, Fθ = arcosθsinφ, Fφ = arcosφ; (d) F = a ∧ r; (e) F = ra; (f) F = a(a · r).
1.7.1 Defining What Conservative Means

To determine whether functions are conservative we must compute the curl of the function if it equals zero then the
function is conservative.

~∇∧ ~F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ = î

(
∂Fz
∂y
− ∂Fy

∂z

)
− ĵ

(
∂Fz
∂x
− ∂Fx

∂z

)
+ k̂

(
∂Fy
∂x
− ∂Fx

∂y

)
1.7.2 Part A

∂Fz
∂x

= 0
∂Fx
∂z

= 0

∂Fy
∂x

= 2by
∂Fx
∂y

= 2by

∂Fy
∂z

= a
∂Fz
∂y

= a

∂Fz
∂y
− ∂Fy

∂z
= 0− 0 = 0

∂Fz
∂x
− ∂Fx

∂z
= 2by − 2by = 0

∂Fy
∂x
− ∂Fx

∂y
= a− a = 0

This this force is conservative. The associated potential function is given by V (~r) = −
∫ ~r ~F ·d~r = −

∫ x
Fxdx−

∫ y
Fydy−∫ z

Fzdz which applied to our force function gives

V (x) = −1

2
ax2 − by2x− azy − bxy2 − ayz − 1

3
bz3 = −1

2
ax2 − 2by2x− 2ayz − 1

3
bz3 (16)

1.7.3 Part B

∂Fz
∂x

= a
∂Fx
∂z

= 0

∂Fy
∂x

= 0
∂Fx
∂y

= a

∂Fy
∂z

= a
∂Fz
∂y

= 0

∂Fz
∂y
− ∂Fy

∂z
= a− 0 = a

∂Fz
∂x
− ∂Fx

∂z
= 0− a = −a

∂Fy
∂x
− ∂Fx

∂y
= a− 0 = a

Hence, ~∇∧ ~F 6= 0 so this force is non-conservative.
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1.7.4 Part C

~∇∧ ~F =

∣∣∣∣∣∣∣
1̂r

r2sinφ
1̂φ

rsinφ
1̂θ
r

∂
∂r

∂
∂φ

∂
∂θ

Fr rFφ rsinφFθ

∣∣∣∣∣∣∣ =
1̂r

r2sinφ

(
∂Fθ
∂φ

rsinφ− ∂Fφ
∂θ

r

)
− 1̂φ
rsinφ

(
∂Fθ
∂r

rsinφ− ∂Fr
∂θ

)
+

1̂θ
r

(
∂Fφ
∂r

r − ∂Fr
∂φ

)

I evaluated this using Matlab using the code:
curl([2*a*r*sin(theta)*sin(phi), a*r*cos(phi)*sin(theta), a*r*cos(phi)], [r, phi, theta], Spherical)

ans = 0 0 0

Hence, ~∇∧ ~F 6= 0 so this force is conservative.

The corresponding potential function was also found using Matlab and was determined to be

V = −ar2sinθsinφ (17)

1.7.5 Part D

We will use the identity ~∇∧ (~a ∧ ~r) = [~∇ · ~a+ ~a · ~∇]~r − [~∇ · ~r + ~r · ~∇]~a to compute the curl of a wedge product. Since in

general ~∇ · ~G = ~G · ~∇ we can see that

~∇∧ (~a ∧ ~r) =[~∇ · ~a+ ~a · ~∇]~r − [~∇ · ~r + ~r · ~∇]~a

=[2~∇ · ~a]~r − [2~∇ · ~r]~a
6=0

Hence, ~∇∧ ~F 6= 0 so this force is non-conservative.

1.7.6 Part E

∂Fz
∂x

=
daz
dx

∂Fx
∂z

=
dax
dz

∂Fy
∂x

=
day
dx

∂Fx
∂y

=
dax
dy

∂Fy
∂z

=
day
dz

∂Fz
∂y

=
daz
dy

∂Fz
∂y
− ∂Fy

∂z
=
daz
dx
− dax

dz
6= 0

∂Fz
∂x
− ∂Fx

∂z
=
day
dx
− dax

dy
6= 0

∂Fy
∂x
− ∂Fx

∂y
=
day
dz
− daz

dy
6= 0

Hence, ~∇∧ ~F 6= 0 so this force is non-conservative.

1.7.7 Part F
If we try to take the curl of a scalar we will quickly see it is zero. A dot product is a scalar, hence

~∇∧ [~a(~a · ~r)] = 0

This this force is conservative. The associated potential function is given by V (~r) = −
∫ ~r ~F · d~r′ which applied to our

force function gives

V (~r) = −1

2
(~a · ~r)2 (18)

1.8 Problem 3.2
Given that the force is as in Problem 1(a), evaluate the work done in taking a particle from the origin to the point

(1, 1, 0) : (i) by moving first along the x-axis and then parallel to the y-axis, and (ii) by going in a straight line. Verify that
the result in each case is equal to minus the change in the potential energy function.

1.8.1 Part i
The force is Fx = ax+ by2, Fy = az+ 2bxy, Fz = ay+ bz2. We will parameterize the path from first to point r1 = 1, 0, 0)

using (t, 0, 0) then to r2 = (1, 1, 0) using (1, t, 0). The first change in potential is

V (r) = −
∫ r1

~F · (dt, 0, 0) = −
∫ 1

at+ by2dt =
at2

2
− by2t|r1r0 = −a

2

Then we integrate from r1 = 1, 0, 0) to r2 = (1, 1, 0) using (1, t, 0). We then obtain

V (r) = −
∫ r2

r1

~F · (0, dt, 0) = −
∫ r2

r1

az + 2bxt · dt = azt+ bxt2|r2r1 = −b
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Adding these two values together we obtain

∆V = −a
2
− b = −a

2
− b (19)

1.8.2 Part ii
We now will take a straight line path parameterized by (t, t, 0). We find that the line integral is then

∆V = −
∫ r2

r0

F · (dt, dt, 0) = −
∫ 1

0

at+ by2dt−
∫ 1

0

az + 2bxtdt = −a
2
− 0− 0− b− 0 = −a

2
− b

1.8.3 Part iii
To make sure these results agree with our potential function we will plug in the values directly to the potential function

∆V = V (1, 1, 0)− V (0, 0, 0) =
[
−a

2
− 0− b− 0

]
− [0− 0− 0− 0] = −a

2
− b

1.9 Problem 3.4
Compute the work done in taking a particle around the circle x2 + y2 = a2, z = 0 if the force is (a) F1 = yî, and (b)

F2 = xî. What do you conclude about these forces?

1.9.1 Part A
We will parameterize our curve with c(θ) = a(cosθ, sinθ), which means c′(θ) = a(−sinθ, cosθ)dθ. Using the work energy

theorem we conclude that

W = −∆V =− a
∫
c

F1c
′(θ)dθ

=− a
∫ 2π

0

sinθ(−sinθ)dθ

=a

∫ 2π

0

sin2θdθ

=

[
aθ

2
− asin(2θ)

2

]2π
0

=aπ (20)

1.9.2 Part B
We will parameterize our curve with c(θ) = a(cosθ, sinθ), which means c′(θ) = a(−sinθ, cosθ)dθ. Using the work energy

theorem we conclude that

W = −∆V =− a
∫
c

F2c
′(θ)dθ

=− a
∫ 2π

0

cosθ(−sinθ)dθ

=a

∫ 2π

0

sin(2θ)θdθ

=− a
[
cos(2θ)

2

]2π
0

=0 (21)

1.9.3 Part C
The first force is non conservative and the second force is conservative.

1.10 Problem 3.5
Evaluate the force corresponding to the potential energy function V (r) = cz

r3 , where c is a constant. Write your answer in

vector notation, and also in spherical polars, and verify that it satisfies ~∇∧ ~F = 0.

10



1.10.1 Part A
We first note that the negative gradient of the potential is the force function. To determine the force function in vector

notation we use r =
√
x2 + y2 + z2. From here we see that we just differentiate with respect to x, y, and z.

~F =−
(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
=−

(
− 3cxz

(x2 + y2 + z2)
5
2

,− 3cyz

(x2 + y2 + z2)
5
2

,− c

(x2 + y2 + z2)
3
2

+
3cz2

(x2 + y2 + z2)
5
2

)

=c

(
3xz

(x2 + y2 + z2)
5
2

,
3yz

(x2 + y2 + z2)
5
2

,
1

(x2 + y2 + z2)
3
2

− 3z2

(x2 + y2 + z2)
5
2

)

=c

(
3xz

r5
,

3yz

r5
,
r2 − 3z2

r5

)
=
c

r5
(
3xz, 3yz, r2 − 3z2

)
=
c

r5
(
3xz, 3yz, x2 + y2 + z2 − 3z2

)
=
c

r5

(
3zxî, 3zyĵ, x2 + y2 + z2 − 2z2k̂

)
=
c

r5

(
3 (~rz)− z2k̂

)
=
c

r5

(
3
(
~r(~r · k̂)

)
− r2 · k̂

)
(22)

1.10.2 Part B
To write this in spherical polar we must make the change x = rsinθcosφ, y = rsinθsinφ, z = rcosθ.

~F =−
(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
=−

(
− 3cxz

(x2 + y2 + z2)
5
2

,− 3cyz

(x2 + y2 + z2)
5
2

,− c

(x2 + y2 + z2)
3
2

+
3cz2

(x2 + y2 + z2)
5
2

)

=c

(
3xz

(x2 + y2 + z2)
5
2

,
3yz

(x2 + y2 + z2)
5
2

,
1

(x2 + y2 + z2)
3
2

− 3z2

(x2 + y2 + z2)
5
2

)

=c

(
2cosθ

r3
,

2sinθ

r3
, 0

)
(23)

1.10.3 Part C
Given that the curl is defined by

~∇∧ ~F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ = î

(
∂Fz
∂y
− ∂Fy

∂z

)
− ĵ

(
∂Fz
∂x
− ∂Fx

∂z

)
+ k̂

(
∂Fy
∂x
− ∂Fx

∂y

)
I evaluated the curl in MatLab and concluded that

~∇∧ ~F = 0 −→ F is conservative

2 Extra Credit Problems

2.1 Problem 2.30
A particle moving under a conservative force oscillates between x1 and x2. Show that the period of oscillation is

τ = 2

∫ x2

x1

√
m

2(V (x2)− V (x1))
dx

In particular, if V = 1
2mω

2
0(x2bx4), show that the period for oscillations of amplitude a is

τ =
2

ω

∫ a

−a

dx√
a2 − x2

√
1− b(a2 + x2)

Using the binomial theorem to expand in powers of b, and the substitution x = asinθ, show that for small amplitude the
period is approximately

τ ≈ 2π

ω0
(1 + 3

4ba
2)

11



2.1.1 Part A

Figure 3: The potential function V (x) = −mω2
(
x2

2 + a4

2x2

)
Using energy conservation, and the picture above we see that the velocity of the particle at any point which lies in between

x1 < x < x2 is found by

T + V =E = V (x2) = V (x1)

mv2

2
+ V (x) =V (x2)

mẋ2 =2 (V (x2)− V (x))

ẋ =

√
2 (V (x2)− V (x))

m

Now that we know the velocity at any point during the oscillation we can solve for the time it takes to get from x1 to x2
which is 1

2 the period. Hence, the period of oscillation ,τ is found by

ẋ =

√
2 (V (x2)− V (x))

m

dx

dt
=

√
2 (V (x2)− V (x))

m

dt =
dx√

2(V (x2)−V (x))
m

2

∫
dt = τ =2

∫ x2

x1

dx√
2(V (x2)−V (x))

m

τ =2

∫ x2

x1

√
m

2 (V (x2)− V (x))
dx (24)

2.1.2 Part B
We see that the total energy of oscillator with amplitude a is

E = V (a) =
mω2

0

2

(
a2 − ba4)

)
Using the equation we just derived previously for period we get

τ =2

∫ x2

x1

√
m

2 (V (x2)− V (x))
dx

τ =2

∫ a

−a

√
m

2 (V (a)− V (x))
dx

τ =2

∫ a

−a

√
m

2
(
mω2

0

2 (a2 − ba4)− mω2
0

2 (x2 − bx4)
)dx

τ =2

∫ a

−a

dx√
(ω2

0 (a2 − ba4)− ω2
0 (x2 − bx4))

τ =
2

ω0

∫ a

−a

dx√
(a2 − ba4 − x2 + bx4)

τ =
2

ω0

∫ a

−a

dx√
a2 − x2

√
1− b (a2 + x2)

(25)
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2.1.3 Part C
We will use the substitution x = asinθ and binomial expansion around b. Note dx = acosθdθ

τ =
2

ω0

∫ a

−a

dx√
a2 − x2

√
1− b (a2 + x2)

τ =
2

ω0

∫ a

−a

dx√
a2 − a2sin2θ

√
1− b (a2 + a2sin2θ)

τ =
2

ω0

∫ θ(a)

θ(−a)

dx

acosθ

√
1− ba2 (1 + sin2θ)

τ =
2

ω0

∫ θ(a)

θ(−a)

acosθdθ

acosθ

√
1− ba2 (1 + sin2θ)

τ =
2

ω0

∫ π
2

−π2

dθ√
1− ba2 (1 + sin2θ)

τ ≈ 2

ω0

∫ π
2

−π2
dθ

(
1− 1

2
ba2
(
1 + sin2θ

))
τ ≈ 2

ω0

[
θ − θ

2
ba2 +

(
θ

2
− cosθsinθ

)]π
2

−π2

τ ≈2π

ω0

(
1 +

3ba2

4

)
(26)

2.2 Problem 3.7
Find the equation for the trajectory of a projectile launched with velocity v at an angle α to the horizontal, assuming

negligible atmospheric resistance. Given that the ground slopes at an angle β, show that the range of the projectile (measured
horizontally) is

x =
2v2

g

sin(α− β)cosα

cosβ

At what angle should the projectile be launched to achieve the maximum range?

2.2.1 Part A
To solve we first write down equations for the x and z directions:

X-Direction

x =x0 + v0xt+
at2

2
x =v0tcosα

x

v0cosα
=t

Z-Direction

y =y0 + v0yt+
at2

2

y =v0tsinα−
gt2

2

Note that y = xtanβ. Now using the the equation for time found with the x direction equations of motion with the y
position function we get

y = xtanβ =v0sinαt−
gt2

2

xtanβ =v0
x

v0cosα
sinα−

g
(

x
v0cosα

)2
2

xtanβ − x

cosα
sinα =−

g
(

x
v0cosα

)2
2

xtanβ − xtanα =
gx2

2v20cos
2α

x [tanα− tanβ] =
gx2

2v20cos
2α

13



Where here we use the trigonometric identity

tanx− tany = secxsecysin(x− y)

And insert this back into the previous step.

gx2

2v20cos
2α

= [tanα− tanβ]

gx

2v20cos
2α

=

[
sin(α− β)

cosαcosβ

]
x =

2v20cos
2α

g

[
sin(α− β)

cosαcosβ

]
x =

2v20
g

[
sin(α− β)cosα

cosβ

]
(27)

2.2.2 Part B
To determine the maximum range range we must take the derivative of the range function with respect to the parameter

α, then set it equal to zero.

dx

dα
= 0 =

2v20
gcosβ

[cos(α− β)cosα− sin(α− β)sinα]

0 =cos(α− β)cosα− sin(α− β)sinα

cos(α− β)cosα =sin(α− β)sinα

1 =tan(α− β)tan(α)

1 =cos(2α− β)

cos−1(1) =2α− β
π =2α− β

α =
π

2
+
β

2
(28)

2.3 Problem 3.9
Show that in the limit of strong damping (large ) the time of flight of a projectile (on level ground) is approximately

τ ≈ (ω/g + 1/γ)(1 − e−1−γω/g). Show that to the same order of accuracy the range is x ≈ (u/γ)(1 − e−1−γω/g). For a
projectile launched at 800ms−1 with γ = 0.1s−1, estimate the range for launch angles of 30◦, 20◦ and 10◦.

2.3.1 Part A
To solve we first write down Newtons Law for the x and z directions and then solve the differential equation:

X-Direction

Fx = max =− λvx
mẍ =− λẋ

This has solution

x(t) =
u

γ

(
1− e−γt

)

Z-Direction

Fy = may =− λvy −mg
z̈ =− γż − g

This has solution

z(t) =

(
w

γ
+

g

γ2

)(
1− e−γt

)
− gt

γ
From here we see that the particle will be in flight until it’s z-position is zero again. Therefore we set the z-equation of

motion equal to zero and solve for t.

14



z(t) =

(
w

γ
+

g

γ2

)(
1− e−γt

)
− gt

γ

gt

γ
=

(
w

γ
+

g

γ2

)(
1− e−γt

)
t =

γ

g

(
w

γ
+

g

γ2

)(
1− e−γt

)
t ≈γ

g

(
w

γ
+

g

γ2

)(
1− γt+

γ2t2

2
· · ·
)

t ≈
(
w

g
+

1

γ

)(
1− (1− γt+

γ2t2

2
− γ3t3

6
+ · · ·

)
t ≈
(
w

g
+

1

γ

)(
γt− γ2t2

2
+
γ3t3

6
− · · ·

)
1 ≈

(
wγ

g
+ 1

)
ln [1− γt]

1(
wγ
g + 1

) ≈ln [1− γt]

e

1

(wγg +1) ≈1− γt

γt ≈1− e−1−
wγ
g

t ≈ 1

γ

(
1− e−1−

wγ
g

)
Since there was not analytic expression for t we had to use approximations such as

ex = 1 + x+
x2

2
+
x3

6
+
x4

24
+ · · · =

∞∑
n=0

xn

n

and

ln|1− x| = x− x2

2
+
x3

3
− x4

4
+ · · · =

∞∑
k=0

xn

n

2.3.2 Part B
Using the result from part A and the solution to x-direction equation of motion we find that the range is just

x =
u

γ

(
1− e−γt

)
x ≈u

γ

(
1− (1− γt+

γ2t2

2
− γ3t3

6
+ · · ·

)
x ≈u

γ
(γt+ · · · )

Now we use the time time we just found in Part A into this first order approximation

x ≈u
γ

(γt)

x ≈u
γ

(γ)

x ≈u
γ
γ

1

γ

(
1− e−1−

wγ
g

)
x ≈u

γ

(
1− e−1−

wγ
g

)
(29)
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2.3.3 Part C
For γ = 0.1s−1 and u = 800ms−1cos(α) and w = 800ms−1sin(α) where α is the launch angle. The ranges for the

corresponding launch angles 30◦, 20◦, and 10◦ are as follows

x30◦ = 6928m x20◦ = 7518m x10◦ = 7879m

Where I have just used the range equation found in part be with numerical values that given. When plugged in the
1− e−1−

wγ
g ≈ 1 hence the range was determined purely by the limiting velocity value

Range ≈ u

γ
=

800ms−1cosα

0.1ms−1
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